skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Windus, Theresa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With an estimated global cost of $2.5 trillion per year, metal corrosion represents a major challenge across all industrial sectors. Numerous inorganic and organic corrosion inhibitors have been developed, but there are growing concerns about their toxicity and impact on the environment. Here, superior organic corrosion inhibitors based on indole-3-carboxaldehyde, a compound commonly found in the digestive system, and thiosemicarbazones, a safe class of ligands, were designed and studied for mild steel in pH 1 sulfuric acid solutions. Electroanalytical techniques and gravimetric tests revealed inhibition efficiencies as high as 98.9% at 30 °C. Models using Langmuir isotherms gave adsorption equilibrium constants Kads of 2 to 9 × 104 M–1 and corresponding Gibbs free energies of adsorption (ΔGads) as high as −41.44 kJ mol–1, indicating their chemisorption. SEM images confirmed the efficacy of these corrosion inhibitors, as surface features showed limited to no changes after tests. Surface analysis by XPS and LC-MS revealed inhibitor concentrations on the order of 0.7 to 1.8 μg cm–2 for the best compounds, further underlining their performance at low concentrations. Mapping of the surface by MALDI-MS further confirmed the homogeneous coating of the steel surface, with no visible fluctuations in concentrations. As all inhibitors shared the same indole thiosemicarbazone platform, unique structure–performance relationships were drawn from theoretical calculations. Notably, DFT and AIMD explained the differences in performance, highlighting the role of side groups in the distribution of the molecular orbitals and the role of water molecules in enhancing the electronic properties of the organic corrosion inhibitors and promoting their chemisorption. 
    more » « less
  2. The oxidative addition/reductive elimination of polar molecules such as methyl iodide at late metal centers has a strongly supported SN2 mechanism for many key organometallic complexes, including important industrial catalysts. In the reductive elimination direction, it is proposed that a ligand initially dissociates, typically a halide, followed by subsequent nucleophilic attack at the ligand trans to the now vacant site. The prevailing view is the metal reduction occurs upon transferring the electrophile in the SN2 step. Herein, we report the use of an ensemble of computational techniques to characterize the electronic structure of the reactants and intermediates along this reductive elimination pathway. These calculations demonstrate, unexpectedly, that the initiating loss of an anionic ligand from the octahedral highly oxidized structure leads to an electronic rearrangement that shifts electron density from the apical ligand back toward the metal resulting in an inversion of the electron flow between the metal and apical ligand. The anisotropic shift in electron density to the metal disproportionately affects the apical position, which is best described as a Pt → Me dative bond. With this Pt → Me bonding description, our interpretation of the IUPAC oxidation state formalism would assign the intermediate as PtII. Although counterintuitive, the formal and functional reduction of the metal thus occurs upon halide dissociation. 
    more » « less
  3. Abstract Contents 1. Introduction- Methods and software for electronic structure based simulations of chemistry and materials 2. Density Functional Theory: Formalism and Current Directions 3. Density functional methods - implementation, challenges, successes 4. Green’s function based many-body perturbation theory 5. Wave-function theory approaches – explicit approaches to electron correlation 6. Quantum Monte Carlo and stochastic electronic structure methods 7. Heavy element relativity, spin-orbit physics, and magnetism 8. Semiempirical methods 9. Simulating Nuclear Dynamics with Quantum Effects 10. Real-Time Propagation in Electronic Structure Theory 11. Spectroscopy 12. Tools for exploring potential energy surfaces 13. Managing complex computational workflows 14. Current and Future Computer Architectures 15. Electronic structure software engineering 16. Education and Training in Electronic Structure Theory: Navigating an Evolving Landscape 17. Electronic structure theory facing industry and realistic modeling of experiments 18. List of Acronyms 
    more » « less
  4. null (Ed.)
  5. The field of computational molecular sciences (CMSs) has made innumerable contributions to the understanding of the molecular phenomena that underlie and control chemical processes, which is manifested in a large number of community software projects and codes. The CMS community is now poised to take the next transformative steps of better training in modern software design and engineering methods and tools, increasing interoperability through more systematic adoption of agreed upon standards and accepted best-practices, overcoming unnecessary redundancy in software effort along with greater reproducibility, and increasing the deployment of new software onto hardware platforms from in-house clusters to mid-range computing systems through to modern supercomputers. This in turn will have future impact on the software that will be created to address grand challenge science that we illustrate here: the formulation of diverse catalysts, descriptions of long-range charge and excitation transfer, and development of structural ensembles for intrinsically disordered proteins. 
    more » « less